Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification.
نویسندگان
چکیده
The paired-box transcription factor Pax7 has been claimed to specify the muscle stem cell lineage since inactivation of Pax7 led to a failure to detect muscle satellite cells. Here we show that muscles of juvenile Pax7(-/-) mice at P11 contain a reduced but substantial number of satellite cells. Neither juvenile nor adult Pax7(-/-) mice displayed a significant reduction in the number and size of myotubes, indicating that the remaining number of satellite cells sufficed to allow normal postnatal muscle growth. The number of satellite cells in Pax7 mutant mice declined strongly during postnatal development, although single satellite cells were readily identified in adult Pax7 mutant mice. Muscle regeneration was impaired in adult Pax7 mutant mice. Our results clearly indicate an essential function of Pax7 for renewal and maintenance of muscle stem cells and exclude an exclusive role of Pax7 in satellite cell specification.
منابع مشابه
Ascl2 inhibits myogenesis by antagonizing the transcriptional activity of myogenic regulatory factors.
Myogenic regulatory factors (MRFs), including Myf5, MyoD (Myod1) and Myog, are muscle-specific transcription factors that orchestrate myogenesis. Although MRFs are essential for myogenic commitment and differentiation, timely repression of their activity is necessary for the self-renewal and maintenance of muscle stem cells (satellite cells). Here, we define Ascl2 as a novel inhibitor of MRFs. ...
متن کاملbeta-Catenin promotes self-renewal of skeletal-muscle satellite cells.
Satellite cells are the resident stem cells of adult skeletal muscle. As with all stem cells, how the choice between self-renewal or differentiation is controlled is central to understanding their function. Here, we have explored the role of beta-catenin in determining the fate of myogenic satellite cells. Satellite cells express beta-catenin, and expression is maintained as they activate and u...
متن کاملReciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination
Postnatal growth and regeneration of skeletal muscle requires a population of resident myogenic precursors named satellite cells. The transcription factor Pax7 is critical for satellite cell biogenesis and survival and has been also implicated in satellite cell self-renewal; however, the underlying molecular mechanisms remain unclear. Previously, we showed that Pax7 overexpression in adult prim...
متن کاملIntegrated Functions of Pax3 and Pax7 in the Regulation of Proliferation, Cell Size and Myogenic Differentiation
Pax3 and Pax7 are paired-box transcription factors with roles in developmental and adult regenerative myogenesis. Pax3 and Pax7 are expressed by postnatal satellite cells or their progeny but are down regulated during myogenic differentiation. We now show that constitutive expression of Pax3 or Pax7 in either satellite cells or C2C12 myoblasts results in an increased proliferative rate and decr...
متن کاملmicroRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7
Skeletal muscle satellite cells are adult stem cells responsible for postnatal skeletal muscle growth and regeneration. Paired-box transcription factor Pax7 plays a central role in satellite cell survival, self-renewal, and proliferation. However, how Pax7 is regulated during the transition from proliferating satellite cells to differentiating myogenic progenitor cells is largely unknown. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 23 16 شماره
صفحات -
تاریخ انتشار 2004